p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.46D4, C22.8SD16, C4.Q8⋊9C2, (C2×C4).38D4, C22⋊C8⋊10C2, C4⋊D4.6C2, D4⋊C4⋊12C2, C4.30(C4○D4), C4⋊C4.64C22, (C2×C8).37C22, C2.12(C2×SD16), C2.17(C8⋊C22), (C2×C4).106C23, (C2×D4).22C22, C22.102(C2×D4), (C22×C4).52C22, C2.12(C22.D4), (C2×C4⋊C4)⋊12C2, SmallGroup(64,162)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C4⋊C4 — C2×C4⋊C4 — C23.46D4 |
Generators and relations for C23.46D4
G = < a,b,c,d,e | a2=b2=c2=e2=1, d4=c, dad-1=eae=ab=ba, ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=bd3 >
Subgroups: 113 in 57 conjugacy classes, 27 normal (15 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C22⋊C8, D4⋊C4, C4.Q8, C2×C4⋊C4, C4⋊D4, C23.46D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C22.D4, C2×SD16, C8⋊C22, C23.46D4
Character table of C23.46D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 11)(2 27)(3 13)(4 29)(5 15)(6 31)(7 9)(8 25)(10 22)(12 24)(14 18)(16 20)(17 28)(19 30)(21 32)(23 26)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 18)(3 7)(4 24)(6 22)(8 20)(9 28)(10 16)(11 26)(12 14)(13 32)(15 30)(17 21)(25 31)(27 29)
G:=sub<Sym(32)| (1,11)(2,27)(3,13)(4,29)(5,15)(6,31)(7,9)(8,25)(10,22)(12,24)(14,18)(16,20)(17,28)(19,30)(21,32)(23,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,18)(3,7)(4,24)(6,22)(8,20)(9,28)(10,16)(11,26)(12,14)(13,32)(15,30)(17,21)(25,31)(27,29)>;
G:=Group( (1,11)(2,27)(3,13)(4,29)(5,15)(6,31)(7,9)(8,25)(10,22)(12,24)(14,18)(16,20)(17,28)(19,30)(21,32)(23,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,18)(3,7)(4,24)(6,22)(8,20)(9,28)(10,16)(11,26)(12,14)(13,32)(15,30)(17,21)(25,31)(27,29) );
G=PermutationGroup([[(1,11),(2,27),(3,13),(4,29),(5,15),(6,31),(7,9),(8,25),(10,22),(12,24),(14,18),(16,20),(17,28),(19,30),(21,32),(23,26)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,18),(3,7),(4,24),(6,22),(8,20),(9,28),(10,16),(11,26),(12,14),(13,32),(15,30),(17,21),(25,31),(27,29)]])
C23.46D4 is a maximal subgroup of
C24.115D4 C24.183D4 C24.117D4 (C2×D4).301D4 (C2×D4).304D4 C42.225D4 C42.227D4 C42.235D4 C23⋊4SD16 C24.121D4 C24.125D4 C24.129D4 C4.2+ 1+4 C4.192+ 1+4 C42.284D4 C42.286D4 C42.291D4
C4⋊C4.D2p: C24.16D4 C4⋊C4.18D4 C4⋊C4.19D4 C24.18D4 C42.353C23 C42.359C23 C42.423C23 C42.426C23 ...
C2p.(C2×SD16): C42.223D4 C42.279D4 C23.43D12 C23.38D20 C23.38D28 ...
C23.46D4 is a maximal quotient of
C24.157D4 C4.Q8⋊9C4 (C2×C4).24D8 C24.89D4 (C2×C8).169D4 (C2×C4).23Q16 M5(2).C22 C23.10SD16
C23.D4p: C23.38D8 C23.43D12 C23.38D20 C23.38D28 ...
C4⋊C4.D2p: C24.159D4 C4.67(C4×D4) C24.84D4 C2.(C8⋊3Q8) D6.SD16 D6.4SD16 C4⋊C4.228D6 C4⋊D4.S3 ...
Matrix representation of C23.46D4 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
4 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[4,0,0,0,0,13,0,0,0,0,12,12,0,0,5,12],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C23.46D4 in GAP, Magma, Sage, TeX
C_2^3._{46}D_4
% in TeX
G:=Group("C2^3.46D4");
// GroupNames label
G:=SmallGroup(64,162);
// by ID
G=gap.SmallGroup(64,162);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,362,194,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^2=1,d^4=c,d*a*d^-1=e*a*e=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b*d^3>;
// generators/relations
Export